Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Journal of infection and public health ; 2023.
Article in English | EuropePMC | ID: covidwho-2302874

ABSTRACT

Background We aimed to measure the seroprevalences and levels of anti-SARS-CoV-2 IgG in children, unvaccinated and vaccinated adults in five districts of Bangladesh and thus, investigate the association of seroprevalence and anti-SARS-CoV-2 IgG level with respect to different attributes of study participants. Methods In the present study, the seroprevalence of serum anti-SARS-CoV-2 IgG was measured in children (n= 202), unvaccinated adults (n= 112), and vaccinated adults (n= 439) using quantitative ELISA. Results The overall seroprevalence in the three groups of the study participants were 58.3% (90%CrI: 52.3-64.2%), 62.2% (90%CrI: 54.4-70.0%) and 90.7% (90%CrI: 88.3-92.9%), respectively. Multivariate logistic and linear regression revealed no significant association of seropositivity and levels of anti-SARS-CoV-2 IgG with the baseline characteristics of the children. AB blood group (vs A;aOR=0.21, 95% CI: 0.04-0.92, p=0.04) and O blood group (vs A;aOR=0.09, 95% CI: 0.02-0.32, p=0.0004) were significantly associated with seropositivity in unvaccinated adults after adjusting for confounders. Age (p=0.002) was significantly associated with anti-SARS-CoV-2 level in vaccinated adults after adjusting for confounders. Most of the children and unvaccinated adults belonged to the lower antibody response class which implicates the necessity of vaccination. Conclusion This study portrays a better way of evaluating transmission of virus and gain a better understanding of the true extent of infection as illustrated by the high rates of seroprevalences in children and unvaccinated adults. The findings of this study depicted from the antibody response also suggest the importance of vaccination.

2.
Future Microbiol ; 17: 449-463, 2022 04.
Article in English | MEDLINE | ID: covidwho-1742149

ABSTRACT

Aim: To predict siRNAs as a therapeutic intervention for highly infectious new variants of SARS-CoV-2. Methods: Conserved coding sequence regions of 11 SARS-CoV-2 proteins were used to construct siRNAs through sampling of metadata comprising 214,256 sequences. Results: Predicted siRNAs S1: 5'-UCAUUGAGAAAUGUUUACGCA-3' and S2: 5'-AAAGACAUCAGCAUACUCCUG-3' against RdRp of SARS-CoV-2 satisfied all the stringent filtering processes and showed good binding characteristics. The designed siRNAs are expected to inhibit viral replication and transcription of various coronavirus strains encompassing variants of concern and interest. Conclusion: The predicted siRNAs are expected to be potent against SARS-CoV-2, and following in vitro and in vivo validations may be considered as potential therapeutic measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Small Interfering/genetics , SARS-CoV-2/genetics , Virus Replication
3.
Comput Biol Med ; 136: 104703, 2021 09.
Article in English | MEDLINE | ID: covidwho-1330719

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest of the several viral pathogens that have acted as a threat to human health around the world. Thus, to prevent COVID-19 and control the outbreak, the development of vaccines against SARS-CoV-2 is one of the most important strategies at present. The study aimed to design a multi-epitope vaccine (MEV) against SARS-CoV-2. For the development of a more effective vaccine, 1549 nucleotide sequences were taken into consideration, including the variants of concern (B.1.1.7, B.1.351, P.1 and, B.1.617.2) and variants of interest (B.1.427, B.1.429, B.1.526, B.1.617.1 and P.2). A total of 11 SARS-CoV-2 proteins (S, N, E, M, ORF1ab polyprotein, ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10) were targeted for T-cell epitope prediction and S protein was targeted for B-cell epitope prediction. MEV was constructed using linkers and adjuvant beta-defensin. The vaccine construct was verified, based on its antigenicity, physicochemical properties, and its binding potential, with toll-like receptors (TLR2, TLR4), ACE2 receptor and B cell receptor. The selected vaccine construct showed considerable binding with all the receptors and a significant immune response, including elevated antibody titer and B cell population along with augmented activity of TH cells, Tc cells and NK cells. Thus, immunoinformatics and in silico-based approaches were used for constructing MEV which is capable of eliciting both innate and adaptive immunity. In conclusion, the vaccine construct developed in this study has all the potential for the development of a next-generation vaccine which may in turn effectively combat the new variants of SARS-CoV-2 identified so far. However, in vitro and animal studies are warranted to justify our findings for its utility as probable preventive measure.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Computational Biology , Epitopes, B-Lymphocyte , Humans , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL